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Structured Discriminative Models for Speech Recognition

Overview

• Acoustic Models for Speech Recognition

– generative models and speech production
– discriminative models and features

• Training Criteria

– large-margin-based training

• Combining Generative and Discriminative Models

– generative score-spaces and log-linear models
– efficient feature extraction

• Initial Evaluation on Noise Robust Speech Recognition

– AURORA-2 and AURORA-4 experimental results

• Deep discriminative models

– integration with hybrid framework?
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Generative Models
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Structured Discriminative Models for Speech Recognition

Generative Models

• Need to extract joint distribution between two sequences p(w,O)

– word sequence w - can’t usually model at sentence level - language model
– observation sequence O - usually extracted every 10ms - acoustic model

• Standard generative models - P (w)p(O|w;λ) - λ model parameters:

p(O|w;λ) = p(o1|w;λ)p(o2|o1,w;λ) . . . p(oT |o1, . . . ,oT−1,w;λ)

– impractical to directly model in this form

• Two possible forms of conditional independence used:

– observed variables
– latent (unobserved) variables

• Standard sequence model for this: Hidden Markov Model
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Structured Discriminative Models for Speech Recognition

Hidden Markov Model - A Dynamic Bayesian Network
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(a) Standard HMM phone topology
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(b) HMM Dynamic Bayesian Network

• Notation for DBNs [1]:

circles - continuous variables shaded - observed variables
squares - discrete variables non-shaded - unobserved variables

• Observations conditionally independent of other observations given state.

• States conditionally independent of other states given previous states.

p(O;λ) =
∑

q

T
∏

t=1

P (qt|qt−1)p(ot|qt;λ)
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Structured Discriminative Models for Speech Recognition

Speech Production (1)
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(c) Speech Production
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(d) HMM Generative Model

• Not modelling the human production process!
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Structured Discriminative Models for Speech Recognition

Speech Production (2)

Human Production

• Acoustic tube:

– articulators move:
alter the shape of the vocal tract;
enable/disable nasal cavity;

– co-articulation effect.

• Excitation source:

– vocal cords vibrate producing quasi-
periodic sounds (voiced sounds);

– turbulence caused by forcing air
through a constriction in the vocal
tract (fricative sounds).

• Speech:

– sound pressure wave.

HMM Production

• State evolution process

– discrete state transition after each
“observation”;

– probability of entering a state only
dependent on the previous state.

• Observation process

– associated with each state is a
probability distribution;

– observations are assumed
independent given the current
state.

• Speech representation

– feature vector every 10ms.
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Structured Discriminative Models for Speech Recognition

HMM Trajectory Modelling

Frames from phrase:
SHOW THE GRIDLEY’S

...

Legend
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• HMM
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Discriminative Models
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Structured Discriminative Models for Speech Recognition

Discriminative Models
• Classification requires class posteriors P (w|O)

– generative model classification use Bayes’ rule:

P (w|O;λ) =
p(O|w;λ)P (w)

∑

w̃ p(O|w̃;λ)P (w̃)

• Discriminative model - directly model posterior [2] e.g. Log-Linear Model

P (w|O;α) =
1

Z
exp

(

αTφ(O,w)
)

– normalisation term Z (simpler to compute than generative model)

Z =
∑

w̃

exp
(

αTφ(O, w̃)
)

• Able to use very rich set of features φ(O,w)
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Structured Discriminative Models for Speech Recognition

Example Standard Sequence Models

qqt

t ot+1o
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• Compute the posteriors of the state-sequence q

– maximum entropy Markov model [3]

P (q|O) =
T
∏

t=1

1

Zt

exp
(

αTφ(qt, qt−1,ot)
)

– conditional random field (simplified linear form only) [4]

P (q|O) =
1

Z

T
∏

t=1

exp
(

αTφ(qt, qt−1,ot)
)
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Structured Discriminative Models for Speech Recognition

Frame-Level Features

• Discriminative models performance highly dependent on the features

– basic features - second-order statistics (almost) a discriminative HMM
– simplest approach extend frame features (for each state si) [5]

φ(qt, qt−1,ot) =













δ(qt, si)
δ(qt, si)δ(qt−1, sj)

δ(qt, si)ot

δ(qt, si)ot ⊗ ot

δ(qt, si)ot ⊗ ot ⊗ ot













– features have same conditional independence assumption as HMM

• Yields a model very similar to discriminatively trained HMM!

How to extend range of features?

– also care about word sequences w not state sequences q
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Structured Discriminative Models for Speech Recognition

Flat Direct Models

o

<s> the dog chased the cat </s>

oo1 t−1o t ot+1 T... ...

• Remove conditional independence assumptions [6]

P (w|O) =
1

Z
exp

(

αTφ(O,w)
)

• Simple model, but lack of structure may cause problems

– extracted feature-space becomes vast (number of possible sentences)
– associated parameter vector is vast
– (possibly) large number of unseen examples
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Structured Discriminative Models for Speech Recognition

Structured Discriminative Models

o o
i+2

o o
j+1

o
j+2 τo

dog chased...

...

...

...
ji+1

• Introduce structure into observation sequence [7] - segmentation a

– comprises: segmentation identity ai, set of observations O{a}

P (w|O) =
1

Z

∑

a

exp



αT





|a|
∑

τ=1

φ(O{aτ}, a
i
τ)









– segmentation may be at word, (context-dependent) phone, etc etc

• What form should φ(O{aτ}, a
i
τ) have?

– must be able to handle variable length O{aτ}
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Structured Discriminative Models for Speech Recognition

“1-Best” Segmentation

• Not necessary to marginalise over all segmentations

– could just select the best single segmentation

{ŵ, â} = argmax
w,a

P (w,a|O) = argmax
w,a







exp



αT





|a|
∑

τ=1

φ(O{aτ}, a
i
τ)















– need to search over all possible segmentations and word sequences

• Rather than using optimal segmentation - just use a good one

– one candidate: HMM segmentation âhmm

– not optimal for model, but efficient ...
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Training Criteria
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Structured Discriminative Models for Speech Recognition

Simple MMIE Example

• HMMs are not the correct model - discriminative criteria a possibility
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• Discriminative criteria a function of posteriors P (w|O;λ)

– use to train the discriminative model parameters α
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Structured Discriminative Models for Speech Recognition

Discriminative Training Criteria

• Apply discriminative criteria to train discriminative model parametersα

– Conditional Maximum Likelihood (CML) [22, 23]: maximise

Fcml(α) =
1

R

R
∑

r=1

log(P (w
(r)
ref|O

(r);α))

– Minimum Classification Error (MCE) [24]: minimise

Fmce(α) =
1

R

R
∑

r=1



1 +





P (w
(r)
ref|O

(r);α)
∑

w 6=w
(r)
ref

P (w|O(r);α)





̺



−1

– Minimum Bayes’ Risk (MBR) [25, 26]: minimise

Fmbr(α) =
1

R

R
∑

r=1

∑

w

P (w|O(r);α)L(w,w
(r)
ref)
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Structured Discriminative Models for Speech Recognition

MBR Loss Functions for ASR

• Sentence (1/0 loss):

L(w,w
(r)
ref) =

{

1; w 6= w
(r)
ref

0; w = w
(r)
ref

When ̺ = 1, Fmce(α) = Fmbr(α)

• Word: directly related to minimising the expected Word Error Rate (WER)

– normally computed by minimising the Levenshtein edit distance.

• Phone: consider phone rather word loss

– improved generalisation as more “errors” observed
– this is known as Minimum Phone Error (MPE) training [27, 28].

• Hamming (MPFE): number of erroneous frames measured at the phone level
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Structured Discriminative Models for Speech Recognition

Large Margin Based Criteria
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• Standard criterion for SVMs

– improves generalisation

• Require log-posterior-ratio

min
w 6=wref

{

log

(

P (wref|O;α)

P (w|O;α)

)}

to be beyond margin

• As sequences being used can make margin function of the “loss” - minimise

Flm(α) =
1

R

R
∑

r=1

[

max
w 6=w

(r)
ref

{

L(w,w
(r)
ref)− log

(

P (w
(r)
ref|O

(r);α)

P (w|O(r);α)

)}]

+

use hinge-loss [f(x)]+. Many variants possible [29, 30, 31, 32]
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Structured Discriminative Models for Speech Recognition

Relationship to (Structured) SVM

• Commonly add a Gaussian prior for regularisation

F(α) = − log (N (α;µα;Σα)) + Flm(α)

• Make the posteriors a log-linear model (α) with generative score-space (λ) [33]

– restrict parameters of the prior: N (α;µα;Σα) = N (α;0, CI)
– single (best) segmentation only considered

F(α) =
1

2
||α||2 +

C

R

R
∑

r=1

[

max
w 6=w

(r)
ref

{

L(w,w
(r)
ref)− log

(

αTφ(O(r),w
(r)
ref)

αTφ(O(r),w)

)}]

+

• Standard result - it’s a structured SVM [34, 33] - link with log-linear model

– able to use more informative priors, for example, non-zero mean [33]
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Combining Generative &
Discriminative Models
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Structured Discriminative Models for Speech Recognition

Possible Features (Summary)

Feature type Example Representation
Example
papers

Gaussian sufficient statistics
δ(aii , vj)
δ(aii , vj)ot

δ(aii , vj)diag(oto
T
t )

[4, 8, 5]

Local discriminant functions,
e.g. MLP posteriors, closest
Gaussians, or HMMs

δ(ai, vj)P (v|ot) [3, 9, 10, 11]

Segment-level score spaces δ(aii , v1)φ(O{ai})
[12, 13, 14,
15]

Segment-level model features δ(aii , vj)φ(O{ai},v, ) [16, 11]

Suprasegmental features, e.g.
word-level features

∑L
τ=1 δ (wτ , dog)

[17, 16, 18,
19, 20, 21]

Interesting option: segment-level features based on generative models
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Structured Discriminative Models for Speech Recognition

Segment-Level Features

• Sequence data (e.g. speech) has inherent variability in the number of samples:

cat sat on mattheThe 1200 frames

O1 = {o1, . . . ,o1200}

The cat sat on the mat 900 frames

O2 = {o1, . . . ,o900}

• Standard approach used in sequence generative models - log-likelihood

φ(O{aτ}, a
i
τ ;λ) = log

(

p(O{aτ};λ
(aiτ))

)

– λ are the model parameters
– standard HMM-based speech recognition has this form

• Discriminative models can make use of far richer features ...
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Structured Discriminative Models for Speech Recognition

Combining Discriminative and Generative Models

ϕ(   ,  )O λ

λ
Compensation

Adaptation/

Generative Discriminative
HMM

Canonical

O

λ

λ

Hypotheses

Score−Space

Recognition

O
Hypotheses
Final

O

Classifier

Test
Data

• Use generative model to extract features [12, 35] (we do like HMMs!)

– adapt generative model - speaker/noise independent discriminative model

• Use favourite form of discriminative classifier for example

– log-linear model/logistic regression
– binary/multi-class/structured support vector machines

Cambridge University
Engineering Department

ISCSLP 2012 25



Structured Discriminative Models for Speech Recognition

Derivative Score-Spaces

• What other features can be extracted using generative models?

– what about using score-spaces from Fisher kernels (and extensions)?

φ(O{aτ}, a
i
τ ;λ) = ∇λ log

(

p(O{aτ};λ
(aiτ))

)

– does this help with the dependencies?

• For an HMM the mean derivative elements become

∇µ(jm) log(p(O{aτ}, a
i
τ ;λ)) =

∑

t∈{aτ}

P (qt = {θj,m}|O;λ)Σ(jm)-1(ot − µ(jm))

– state/component posterior a function of complete sequence O

– introduces longer term dependencies
– different conditional-independence assumptions than generative model
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Structured Discriminative Models for Speech Recognition

Score-Space Dependencies

• Consider a simple 2-class, 2-symbol {A, B} problem:

– Class ω1: AAAA, BBBB
– Class ω2: AABB, BBAA

42 31

0.50.5

0.51.0 0.5

P(B)=0.5 P(B)=0.5
P(A)=0.5P(A)=0.5

Feature
Class ω1 Class ω2

AAAA BBBB AABB BBAA

Log-Lik -1.11 -1.11 -1.11 -1.11
∇2A 0.50 -0.50 0.33 -0.33

∇2A∇T
2A -3.83 0.17 -3.28 -0.61

∇2A∇T
3A -0.17 -0.17 -0.06 -0.06

• ML-trained HMMs are the same for both classes

• First derivative classes separable, but not linearly separable

– also true of second derivative within a state

• Second derivative across state linearly separable
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Structured Discriminative Models for Speech Recognition

Score-Spaces for ASR
• Forms of score-space used in the experiments:

φa
0(O;λ) =





log
(

p(O;λ(1))
)

...
log
(

p(O;λ(K))
)



 ; φb
1µ(O;λ) =

[

log
(

p(O;λ(i))
)

∇µ(i) log
(

p(O;λ(i))
)

]

– appended log-likelihood: φa
0(O;λ)

– derivative (means only for class ωi): φ
b
1µ(O;λ)

– log-likelihood (for class ωi): φ
b
0(O;λ) =

[

log
(

p(O;λ(i))
)]

• In common with most discriminative models Joint Feature Spaces,

φ(O,a;λ) =







∑|a|
τ=1 δ(a

i
τ , w

(1))φ(O{aτ};λ)
...

∑|a|
τ=1 δ(a

i
τ , w

(P ))φ(O{aτ};λ)







for α-tied yielding “units” {w(1), . . . , w(P )}, underlying score-space φ(O;λ).
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Structured Discriminative Models for Speech Recognition

Handling Speaker/Noise Differences

• A standard problem with discriminative approaches is adaptation/robustness

– not a problem with generative kernels/score-spaces
– adapt generative models using model-based adaptation

• Standard approaches for speaker/environment adaptation

– (Constrained) Maximum Likelihood Linear Regression [36]

xt = Aot + b; µ(m) = Aµ(m)
x + b

– Vector Taylor Series Compensation [37] (used in this work)

µ(m) = C log
(

exp(C-1(µ(m)
x + µ

(m)
h )) + exp(C-1µ(m)

n )
)

• Discriminative model parameters speaker/noise independent.
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Efficient Feature Extraction
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Structured Discriminative Models for Speech Recognition

Structured Discriminative Models

dog

o

chased the

o o1o 2o ot t+1 t+2 Toτ−1τo oτ+1

• Consider specifying speech segments as words [38, 16, 39]

P (w1:L|O1:T ;α) =
1

Z

∑

a

exp



αT

|a|
∑

τ=1

φ
(

O{aτ}, a
i
τ

)





– alignment unknown marginalised over in training (or 1-best taken)

• Features extracted from variable length observation sequence O{aτ}

– unknown start/end times and segment identity
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Structured Discriminative Models for Speech Recognition

General Feature Extraction

time
dog

chased

the

tτ

• General features depend on all elements of the observation sequence

– consider φ (Oτ :t, wl) for all possible start/end times – T 2 feature evaluations
– general complexity O(T 3) – assuming each evaluation O(T )

Computationally expensive!

• BUT extracting features based on HMMs

– derivative features based on posteriors for each segment ...
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Structured Discriminative Models for Speech Recognition

Standard HMM Algorithms
S

ta
te

Time

j

t

• Efficient training and inference

– based on forward-backward/Viterbi algorithms

γ
(j)
t = P (q

(j)
t |O1:T ;λ) =

1

p(O1:T ;λ)
· p(O1:t, q

(j)
t ;λ) · p(Ot+1:T |q

(j)
t ;λ)

– time/memory requirement O(T ) +O(T )
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Structured Discriminative Models for Speech Recognition

Forward/Backward Caching

...
• Cache all state-level forward probabilities – O(T ) forward passes

• For each of the possible O(T ) start-times

– compute backward probabilities – O(T ) possible backward passes
– intersect of forward/backward yields required posterior

• BUT need to accumulate statistics for each start/end time – total O(T 3)
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Expectation Semiring

∆

t (j)

α t (j)

∆

α t (j)

α t (j)

∆

α t−1    (k)

α t−1    (k)

α t−1    (i)

α t−1    (i)

j

t

∆

α

• Efficient calculation using expectation semirings [40, 15]

– extend statistics propagated/combined in forward pass
– scalar summation extended to vector summation

• Expectation semirings allows to accumulate statistics in one pass

– derivative features can be computed for any node in the trellis - O(T 2)
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Evaluation Tasks
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Structured Discriminative Models for Speech Recognition

Preliminary Evaluation Tasks

• Select challenging task - noise robust speech recognition

– combine with model-based noise compensation (VTS/VAT/DVAT)
– artificial tasks reported - same results seen on in-car Toshiba data

• AURORA-2 small vocabulary digit string recognition task

– whole-word models, 16 emitting-states with 3 components per state
– clean training data for HMM training - HTK parametrisation SNR
– Set B and Set C unseen noise conditions even for multi-style data
– Noise estimated in a ML-fashion for each utterance

• AURORA-4 medium vocabulary speech recognition

– training data from WSJ0 SI84 to train clean acoustic models
– state-clustered states, cross-word triphones (≈3K states ≈50k components)
– 5-15dB SNR range of noises added
– Noise estimated in a ML-fashion for each utterance
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Structured Discriminative Models for Speech Recognition

AURORA-2 - Derivative Score-Spaces - MWE Criterion

HMM SDM â
Test set

Avg
A B C

VTS
– – 9.8 9.1 9.5 9.5

φb
1µ

âhmm 7.0 6.6 7.6 7.0
â 6.8 6.4 7.3 6.7

VAT
– – 8.9 8.3 8.8 8.6

φb
1µ

âhmm 6.6 6.5 7.0 6.6
â 6.2 6.1 6.8 6.3

DVAT
– – 6.7 6.6 7.0 6.7

φb
1µ

âhmm 6.1 6.2 6.7 6.3
â 6.1 6.1 6.6 6.2

• Derivative score-spaces (φb
1µ) consistent gains over all baseline HMM systems

– derivative score-space larger (1873 dimensions for each base score-space)
– adds approximately 50% more parameters to the system

Cambridge University
Engineering Department

ISCSLP 2012 38



Structured Discriminative Models for Speech Recognition

AURORA-4 - Derivative Score-Space - MPE Criterion

System
Test set

Avg
A B C D

VTS 7.1 15.3 12.1 23.1 17.9
VAT 8.6 13.8 12.0 20.1 16.0
DVAT 7.2 12.8 11.5 19.7 15.3

VAT+φb
0 7.7 13.1 11.0 19.5 15.3

VAT+φb
1µ 7.4 12.6 10.7 19.0 14.8

• Contrast of DVAT system with log-linear system (4020 classes)

– single dimension space (φb
0) with VAT system yields DVAT performance

• Gains from derivative score-space disappointing (limited training data)

– need to look at DVAT+φb
1µ (need to try on more data)
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“Deep” Discriminative Models?
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Structured Discriminative Models for Speech Recognition

Very Brief History (see Tutorial)

• Form of “generative” model has been fixed =

– standard HMMs with GMMs and MFCC/PLP features

• Vast interest in Deep Neural Networks [41]

– resurrect hybrid systems from 1990s ...

• BUT changes to configuration and training yielded large gains

– MLP targets the distinct states from decision tree clustering;
– increase the number of hidden layers;
– improved initialisation (layer by layer training, RBM initialisation).

Cambridge University
Engineering Department

ISCSLP 2012 41



Structured Discriminative Models for Speech Recognition

MLP Likelihoods (Hybrid Configuration)

Layer 6000 351 (9x39)
Input Layer

 1000x1000x .... x 1000
Hidden Layers Output

• Replace the GMMs as state output distribution by MLP output

– simple mapping to yield likelihoods: p(ot|s;λ) ∝
P (s|ot;λ)

P (s)

• Viewed as a specific discriminative model

φ(O,a;λ) =







∑|a|
τ=1 δ(a

i
τ , w

(1))
∑

t∈{aτ}
log(p(ot|w(1);λ))

...
∑|a|

τ=1 δ(a
i
τ , w

(P ))
∑

t∈{aτ}
log(p(ot|w(P );λ))






; α =





1
...
1




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Hybrid Architecture

qqt

t ot+1o

t+1

• BUT same HMM conditional independence assumptions (or features)

What about using more interesting models?

– approaches for training MLP in sequential fashion already investigated [42]

• Simplest alternative is to train the discriminative model parameters α

– equivalent of class-specific acoustic-to-language model weighting

• Can use all the log-likelihoods, similar to [43, 44]
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Hybrid Segment Features?

• How to get interesting φ(O,a;λ)?

– derive segment-level features
– number of MLP parameters vast ...

• Alternative - use the MLP output as the parameters (like discrete HMM)

– take derivatives with respect to parameters (λti = p(ot|si;λ)) yields

∇λ(i) log(p(O{aτ};λ)) =
∑

t∈{aτ}

(

γ
(i)
t

λti

−K

)

– introduces dependencies for complete segment
– large feature-space again (number of targets)
– could apply L1 regularisation to achieve sparseness

Interesting combination of two research directions
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Conclusions

• Structured Discriminative Models for Speech Recognition

– flexible framework for including wide-range of features
– structures allows direct application to speech recognition
– range of discriminative training criteria - links with structured SVMs

• Combination of generative and discriminative models

– use generative models to derive features for discriminative model
– robustness and adaptation achieved by adapting underlying acoustic model
– structured approach to adding dependencies to the features
– efficient approaches to obtain features/optimal segmentation

• Deep Discriminative Models

– research direction for integrating hybrid systems into framework

Interesting classifier options - without throwing away HMMs
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“Spot the Difference”
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